
Dealing with time in databases and
data models: design

Prof. dr. Bas van Gils

Bas.vanGils@strategy-alliance.com
Managing partner @ Strategy Alliance
Professor @ Antwerp Management School

Introduction
In this article, I will discuss the use of “time in
data models.” I’ve been thinking about this topic
for a while now and must admit that my thinking
has evolved quite a bit over the last few months.
I don’t think I have a complete answer yet so I
will give an overview of my current thinking.
Suggestions for improvement are more than
welcome!

Terminology
I will first have to explain some terminology.
Most notably, I will have to define the terms data
and data model. I will try to be brief and refer to
reader to my book Data in Context (link at
Amazon) for more details.

In my view, data represents our understanding of
a domain in such a way that it can stand for that
domain. The corollary is that data is a
representation. It is something we can touch/
handle/ manage/ use. Referencing the title of the
book, it is important to note that data that may be
good enough (and thus: can stand for reality) in
one context may not be good enough for another
at all. Along the same line, a model is a
purposefully created artefact that captures our
understanding of a domain in such a way that it
can stand for that domain. Again, there is room
for subjectivity: a model that is good enough for
one purpose may not work for another purpose.
Typical purposes are a) to gain and communicate
understanding about some domain, b) to design a
database that stores data about that domain, c)
to analyze problems in that domain, etc.

There are similarities between data and model,
particularly in the sense that they are
(subjective) representations about a domain. My
view is that the relationship between these two
concepts is mainly in the form of abstraction. A
short explanation will have to suffice: a model

can either represent an abstraction of the
domain that we are considering, or it could
represent an abstraction of data which is an
abstraction of a domain itself! In order to assess
whether data can, indeed, stand for a given
domain, my claim is that data must have
structure and meaning. In my view, the relational
model - particularly the way Chris Date explains
it in e.g. Database Design and Relational Theory -
(link on Amazon) is a good way to handle
structure and meaning. As a (very/too) brief
introduction:

• A database consists of a set of relations that
are assigned to relation variables (relvars).
Relations are often called tables, but there
are noteworthy differences.

• A relation consists of tuples (rows) of the
same type.

• A Tuple represents a proposition about the
domain and are therefore either true or false.

• The header of a relation represents its
predicate which is neither true or false. Think
of a predicate as a proposition “with holes in
it”.

• Tuples consist of typed values with a
semantic indicator.

• The information principle states that all
information in a database is represented in
exactly one way: by explicit values in attribute
positions in tuples in relations.

• The closed world assumption states that,
loosely, everything that is in/can be derived
from the database is presumed to be true,
whereas everything that is not in/cannot be
derived from the database is presumed to be
false.

https://www.amazon.com/Data-Context-Enablers-Enterprise-Engineering/dp/3031355385/
https://www.amazon.nl/-/en/C-J-Date/dp/1484255399

There is much more to say about this, but this
short introduction will have to do for now. By way
of example, consider the following situation:

The relvar PERSON is currently assigned to a
relation with 4 tuples. The predicate is: the
PERSON with first name FNAME (of type NAME)
and last name LNAME (of type NAME) has
birthdate BDATE (of type DATE).

Filling in the values of the tuple that is shown
first leads to the proposition: the PERSON with
first name “John” and last name “Doe” has
birthdate “01-Dec-1976” (this is only slightly
sloppy: I left out the type names of the explicit
values in this proposition). To verify whether this
specific proposition is true or false, we could ask
for a birth certificate and do a check.

The “tuple” (quotes deliberate) that is shown last
is particularly interesting. The marker NULL
denotes the absence of a value. To repeat: it is
not a value but signifies the absence of a value.
Trying to write out the proposition would lead to:
The PERSON with first name “Ed” and last name
“Wash” has birthdate “NULL”. Note that this is a
predicate: there is still a “hole” in it so we cannot
assess whether it is true or false.

Thinking about time
Time is a tricky concept: many books and
scientific publications have been written about it.
Since data and models are representations, our
main objective is to try to understand how to
represent time. Therefore, I will not go into the
philosophical discussion about what time is for
now and focus mainly on how to represent it in a
data model. Also, I will mainly work through
some examples to share my thinking.

Transaction time and valid time
The first observation is based on the book
Developing time-oriented database applications
in SQL by Snodgrass (see e.g. Amazon). The book
makes several interesting observations (yet I
also have some conceptual issues with the
theory that is presented). The distinction that
interests me is indicated as transaction time

PERSON
FNAME: NAME LNAME: NAME BDATE: DATE
John Doe 01-dec-1976
Mary Doe 12-nov-1975
Mary Watson 13-Mar-1977
Ed Walsh NULL

versus valid time. The two denote when we
become to know something and when it is valid
respectively.

To illustrate the difference (very loosely, for
now), consider again the PERSON relvar.
Suppose we add an attribute (column) with name
RDATE of type DATE such that the predicate for
the relation would become: The PERSON with
first name FNAME (of type NAME) and last name
LNAME (of type NAME) has birthdate BDATE (of
type DATE) which was recorded in the databases
on RDATE (of type DATE). The RDATE attribute
would be an example of a transaction time as it
indicated when something became known to us.
The BDATE would be a valid time (and in this
case it is unlikely to ever change, barring the
case where someone made a mistake in
reporting a birth date).

This distinction allows us to reason about
birthdays, who is older than whom etc. It also
allows us to reason about what we knew at a
specific point in time: it could be that we know
someone, but didn’t find out when s/he had her
birthday until after a fact and therefore we were,
logically, unable to send a card in time. Useful
and interesting.

Time intervals
A second thing to worry about is time intervals.
For the time being, I will set the valid/transaction
time discussion aside and only focus on valid
time. Trying to represent this well in databases/
data models has been bugging me for a long
time. Not long ago, I reached out to Chris Date to
ask his opinion on the matter. I thought I had
read most of his major publications, but it looks
like I missed the one most pertinent to the topic
at hand: Time and Relational Theory: Temporal
Databases in the Relational Model and SQL which
he wrote together with Hugh Darwen and Nikos
A. Lorentzos (link on Amazon).

Needless to say, I obtained a copy of the book
(second edition) and have been studying it for
close to two months now. The book is complex
and densely written but I think I’m starting to
understand its main points.

I’ll work my way through an example once more.
In this case, the example is about the period in
which you are insured for something. In this
fictitious world, you are insured from the
moment you start paying until you stop paying –
simple is that. Let’s say payments are monthly to
simplify the matter somewhat. The thing is: when
you purchase your insurance for the first time,

https://www.amazon.com/Developing-Time-Oriented-Database-Applications-Management/dp/1558604367
https://www.amazon.com/Time-Relational-Theory-Databases-Management-ebook/dp/B00N2SNSUG

the end date is probably still unkown! An
approach that I often see in practice is:

Leaving out the data types for convenience, the
predicate for this relvar is: The INSURANCE of
the person with name PRS starts at SDATE and
ends et EDATE. Problem solved? Or is it!? Note
that the tuple for John Doe clearly represents a
proposition about the real world. However, the
tuple for May Doe does not: it is a predicate (it is
a proposition with a “hole” in it). This leads to all
kinds of nasty things, so will discard this first
attempt at a design for our database.

As a second attempt, we could split up the
relation: one relvar will focus on the start of
insurance intervals and the other on the end of
insurance intervals. It would lead to something
like:

(performance related) issues with the amount of
JOINs you’ll have to do. There simply has to be a
better way of dealing with this.

In a third attempt, I thought about introducing a
new type called DATE-INTERVAL. The idea is that
[01-jan-2012 , 31-jan-2012] would denote a
specific interval which include the start date and
end date, whereas [01-jan-2012 , 01-feb-2012)
would denote an interval with the start date
included and the end date excluded. If the “grain”
of our DATE-INTERVALS is one day (i.e. we only
consider calendar dates) then the two intervals
are conceptually the same.

Aside: they are two possible representations
(POSREPs) of the same interval in the real world.
End of aside.

This is also where I went wrong initially. I
thought about representing an open-ended
period (from now until someone decides we have
to stop) as [01-jan-2012, ∞), where ∞ denotes
infinity. Since isn’t a real value, this is a direct
violation of the information principle, the very
foundation of relational theory. Therefore, we
should reject this design: it would be similarly
bad as allowing NULL “values”.

Going through the aforementioned book by Date,
Darwen and Lorentzos, I found another solution
which seems to work well. The idea is to work
with a SINCE-version of a relvar and a DURING-
version of the relvar as illustrated below:

The predicates for these relvars should be
obvious. Certainly this design seems a little bit
better: we lost the NULL “value”. There are issues
still, though. First, we have to make sure that
there can only be an entry in IEND if there is a
corresponding entry in ISTART. This can be
achieved through a foreign key constraint.
Second, we need to ensure that the end date (in
IEND) is after the start date (in ISTART). This can
be achieved with a constraint such as:

CONSTRAINT CorrectDates IS_EMPTY
 ((ISTART JOIN IEND) WHERE
 EDATE < SDATE)

For the purpose of understanding (i.e. creating
some conceptual model that helps to understand
this domain), this probably works well enough
yet in more advanced examples you’ll quickly run
into a wall. However, when the purpose shifts to
designing a database, this will cause further

INSURANCE
PRS: NAME SDATE: DATE EDATE: DATE
John Doe 01-jan-2002 31-mar-2002
Mary Doe 01-feb-2002 NULL

ISTART
PRS: NAME SDATE: DATE
John Doe 01-jan-2002
Mary Doe 01-feb-2002

ISTART
PRS: NAME SDATE: DATE
Mary Doe 01-feb-2002

IEND
PRS: NAME EDATE: DATE
John Doe 31-mar-2002

I-DURING
PRS: NAME DURING: PERIOD
John Doe [01-jan-2002,31-mar-2002]

Again, the predicates should be straightforward.
As before, we have to be very careful with some
constraints between the two relations to ensure
that they work correctly (that is: to ensure that
they correctly represent our understanding of
the domain such that it can stand for that
domain). These are beyond the scope of this
article - yet I will address them in a future article
on implementing this type of solution.

It should be easy to see that a set of operators
on DATE-INTERVALS would be helpful to
determine which intervals overlap, are touching,
etc.

It is not super difficult to define these
conceptually. However, implementing them in an
SQL-database might be tricky for several
reasons. To give a first idea:

• Working with dates and times in SQL is a
nightmare. I also believe (but still have to
convince myself) that different relational
database management platforms implement
the standard slightly differently which is not
helpful at all.

• Defining types of your own in SQL is possible,
but you have to know the standard AND the
specifics of the underlying platform to get it
right.

• SQL has issues (i.e., the NULL-problem)
which complicates matters further,
particularly when it comes to defining proper
integrity constraints.

Conclusion
In this article, I have discussed some of the
issues around dealing with time in data models
and databases. The first one deals with valid
time versus transaction time. It takes a while to
wrap your head around it, but it seems doable.
The second issue deals with intervals of time.
Here I have only scratched the surface, mainly
from a conceptual perspective. The journey so
far can be summarized as:

• One entity/relation: all details in one place
using an attribute for start date and an
(optional) attribute for end date.

• One entity/relation for common properties of
insurance, with separate entities/relations
for the details about start and end dates of
insurances.

• One entity/relation for common properties of
insurance, with separate entities to track
completed (DURING) insurance periods and
ongoing (SINCE) insurance periods.

The point has to be reiterated: this data model
only represents the conceptual exploration of
the period in which an insurance is held. How
such a model is represented in a (SQL) database
has been touched upon only briefly.

In my view, implementation is a different ball
game than design and I highly recommend
readers to pick up the book by Date, Darwen and
Lorentzos to get a better understanding. I know
for a fact that I’ll have to re-read it a few more
times before it all becomes crystal clear.

For the time being, I have learned that dealing
with time (and particularly with time intervals)
should be trigger alarm bells when creating a
design. It seems so easy to simply add some
attributes to your entity types and then build/
generate your physical data model. Hopefully
this short exploration convinces you that such
topics require more careful thought.

I hope you find this paper interesting. If you have
some thoughts or comments, please feel free to
drop me a note. I’ll be thinking about this topic
for a while longer. Thanks!

